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ABSTRACT

Robotic spacecraft arc controlled by onboard sets of commands called "sequences.”
Determining that scquences will have the de.sired effcet on the spacecraft can be expensive in terms
of both labor and computer coding time, with diffc.rent particular costs for different types of
spacecrafl. Speci fication languages and appropriate user interface to the languages can be used to
make the most ¢ ffective use of enginecring validation time. This paper dc.scribes one specification
and verification environment (" SAVE") designed for validating that command sequences have not
violated any flight rules. This SAVE system was subsequently ada%ted for flight usc on the
‘]’ OP} ; X/Poseidon spacecraft. The relationship of this work to rule-bawd artificial intelligence and
to other specification techniques isdiscussed, as well asthe issues that arise in the transfer of
technology from a rc.search protot ype to afull flight system.

IN1'ROI)LJCH 10N
A Taxonomy Of Robotic Spacecraft

Robotic spacecraft have completed a variety of complex missions. All of the.sc spacecraft
have the characteristic that they must be remotely commanded. Table 1 lays out the differing
commanding drivers for three categoric.s of spacecraft:the earth-orbiting spacecraft, the planctary
o1 biter, and the. planetary flyby mission. Fach type of mission has some overlap with each of the
other two types, and a given mission might not fit any of the stereotypes Mow exactly. However,
some general characterizations arc true: planetary missions, duc to their long one-way light times,
tend to require that they be able to “take care of themselves” for alonger period than a comparable
earth orbiter. as well as simply surviving for yearsuntil they reach their prim target. ‘1" heir signal
strength will be lower due to distance and to the higher cost of injecting alarge antennainto an
interplanctary trajectory, which in many cases will lead to lower bit rates.

Planetary missions usc the Deep Space Network (DSN), which has a scheduling system
very di fferent from the earth-orbi[cr Tracking and Data Relay Satellite S ystem (“1'1>1<SS). ‘1 DRSS
schedules tend to be more dynamic than DSN schedules, duc to the need to accommodate Shuttle
operations as well as planctary missions.

}'lane.tary spacccraft controllers usual] y need to explicitl y manage three time systems with
varying offsets: earth receive time, ground transmit time, and spacecraft event time, which can
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differ by tens of hours for far-distant spacecraft. Earth orbiter tools usually do not need to make
this distinction. From deep space, "earth" is close to a point target, and usually a planetary
spacecraft will not need to "know" 'which antennasite on the ground it is using. Earth orbiters need
to point at their ground or space antenna, since Earth looks big from Earth orbit.

Mapping or orbiting spacecraft, whether around earth or around another planet, will tend to
be more repetitive in their actions than will aone-opportunity flyby spacecraft. This will lead to a
requirement for differing optimization for tools for orbiters and flybys. The single-opportunity
nature of flyby encounters also of necessity leads to a differing attitude about risk than for an
orbiter.

The large number of satellites in Earth orbit has led to the development of a reasonably
good characterization of this environment; planetary spacecraft largely do not have this luxury
(yet). This means that planetary spacecraft may have more unknowns in an anomaly anaysis.

For all these spacecraft, however, frequently the first sign of trouble is that the spacecraft
ceases to communicate. The desire to avoid this state leads to a desire for sequence validation
tools. The tools discussed in this paper are designed to make it easier to capture knowledge about
the spacecraft's constraints in both nominal and anomaly conditions to make it less expensive and
more reliable to fly any of these types of missions. A tool to help ensure quality of sequences for
al the categories of spacecraft will be fast, to allow for quick turnarounds for volatile
environments; will be easy to use, to allow al three. types of spacecraft users to input their
requirements; will be useful both in a TDRSS or 1) SN-relate.d scheduling environment, and will
not be tied to an optimization of any particular frequency of events.
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Table 1. Some characteristics of different types of missions.
Spacecraft comimanding

Currently, spacecraft software and commanding systems arc built in a complex hardware
and software context. (Figure 1.) Flight software is defined here as the lowest-level hardware




1AA-0603P

management soft,_e, that manages analog inputs from various mechanical devices on the
spacccraft, m anages low-level data management andbus interactions on the computing hardware,
and so on. On top of this software runs an operating system to manage the interaction of the
“programs’ that will cause the spacecraft to perform its scicnce and engincering tasks. (The
distinction here between "flight software” and "operating system" is somewhat arbitrary and
semantic, and diffcrent projects and rescarchers split the difference at varying points. The cxact
distinction is not relevant for future discussion here.) Above this 10 W-ICVCI management layer isa
sctof commands that are the first Ievel a routine user of the system will see. These commands are
usualy relatively low-level actions -- to slew a platform so many degrees, for example, or to flip a
relay. Two types of “programs’ can be written using this command set: fault protection routines

and sequences.

Fault protection routines arc programs that monitor spacecraft state and activate themselves
w] ien some error state occurs. These can be anthropomorphicized as the “reflex actions’ of the
spacecraft. Scquences arc the “conscious’ science and engincering actions that the spacecraft necds
to take to complete its missions. Both fault protection and sequences have tools that have been
developed to assist in building the.sc programs, as well as a variety of simulators that examine
intcraction between sequences and fault protection and programs for tracking results of sequences
like science data quality, spacecraft hardware configuration, planned tracking station usage, and so
on. Different types of spacecraft opcrations specialists will typically deal with different “layers’,
as shown in the kcy of Figure 1.
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Figure 1. Software and hardware context for sequencing tools.
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What is automated and why

To support the building of scquence programs, a variety of automation tools have bear
developed. Figure 2 shows a generic sequence-building process, and shows the relative degree of
automation of each of the processes for atypical spacecraft. Scquence requests arc integrated more
or less by hand, since this involves discussion, knowledge of both science and the spacecraft, and
so on. After integration, the scquence “program” must be written. Usually, this program is
written in "subroutines" (called blocks, or modules, or some other project-spc~ific terminology).
For space.craft that arc fair] y repetitive, this step will usual] y be more automated than for spacecraft
that arc onc-cncounter spacecraft.

Sclence,
Navlgation/geometry
S/C engineering
Tracking schedules
Downlink Issues

i
\}\}I\} N T Trmr——
hequen 7 “Expansion’
request —>\data entry Q” i (‘)f""da"‘)" S 'lnt{) ;
Integratiom (high-to- N\ high-level low-level
medium constraints (ascil)
level) N Eererers s cmds
\\'\3\ - s
"'W\\(\/
\g;(-n(-ruﬂon N Tt
\ f sccondary ——— =15 Validation
user review N of ’
roducts §_ low -‘Icvol
Thimelines, etc) \) constraints
- .
SO\ P pen.
[\ Simulation/ e Conversion
N\ validation \ to binary &
[\ (some rojects) \ memory
:;;;;SE\:\§ ~ ~a | memt

KEY: |
D Currently done completely l)y hand
@ At least partially automated, some projeets

At least partially automated, some projects:
functionality addre.sised inthls paper

[:_::] Virtually completely antomated, most projects

Figure 2. Software context of sequence validation tools.

These “programs’ must then be debugged (checked against constraints), compiled down
into the low-level commands that run on the spacecraft operating systcm, and then checked again
against command-level constraint% “I"his constraint-checked program is then made into binary and
sentto the. space.craf[. Along the way, a varicty of ancillary programs generate timelines and other
human-readable products to assist in review. Some projects also will simulate the effects of a
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sequence (and its interaction with fault protection) at some level. The response time and character
of the tools for building, sequences reflect the expected volatility of the sequences (if everything is

oing to change alot at the last minute, one might as well defer most detailed planning until then,
or example) as well as most of the other characteristics in Table 1.

The congtraint-validation tasks in Figure 2 are among the most time-consuming across all
types of missions. If a means could be found to automate this part of the command-generation
("uplink") process in a manner most applicable to each of the categories of robotic spacecraft, the
savings would be substantial.

‘1'11{ SAW; SYSTEM
Overview and chronology

We have defined a Specification And Verification Environment (SAVE) for spacecraft flight
rules. Initially, it was developed as a prototype running on a parallel computer. This prototype
was then adapted to run on a desktop workstation for actual flight usc for the ‘1’ OPI{ X/Poseidon
space.craft; this adapted version is called MSAVE (Mission Planning and Sequencing Subsystem
SAVE). The implementation of this system has been extensivel y described elsewhere! 2.3 and will
be summari zed below.

Parall¢l processing heritage

The SAVE system was developed with the idea of running on a parallel computer so that
complex systems could be validated interactively. This meant that the information in the models
had to be readily separable into mostly non-interconnected chunks. Thiswas achieved? by
requiring that acommand only "belong” to one model; a mechanism was developed for
transmitting data between models when theneed arose. Our first test case was obtained by "reverse
engineering” several Galileo models and rules from aPI./1based older mainframe code. Good
utilization cfficiency of the parallel processors was obtained’,

Constraint identification versus constraint satisfaction

The SAVE system identifies constraints that have been violated. 1t does not suggest means
for resolving the constraint, as has been studied for a variety of artificial intelligence planning
tools. The congtraint-identification problem is much simpler (solution complexity is of the. order of
the number of rules and models), whereas constraint-satisfaction and scheduling problems arc for
the most part np-complete. The. SAVE system can thus be thought of as a stepping-s{onc towards
distributed planning systems (which arc under development for several applications)4: it forcesthe
user to collect constraints on the system in an organized and complete manner, while avoiding the
difficult problem of attempting to lay out al possible future paths in a replan.

Automating constraint checking while allowing the user to determine the fix for the
constraint violation alows the computer to do what it dots best (sifting through large amounts of
data and events) while allowing the human to do what she does best (handling exceptions). This
approach remains scalable as the system gels larger and more complex, since the complexity of the
mode.ls will rise more or less linearly with the complexity of the system.

Other specification systems that allow a user to specify constraints and desired system
behavior with the intent of generating provably correct code have also been developed® and we
will continue to explore ways of using the best features of language.s and undcrlying code
generators to have as intuitive and portable a constraint-chec king and machine code generation
system as possible.
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Specification and verification languages

The"Specification” part of the SAW environment allows the user to specify the system
behavior without specifying constraints. This behavior isrepresented using a finite-state machine
approach similar to the statecharts introduced by D.Harel.¢ The specification can be simulated so
asto validate system behavior. Every systemismodeled as a set of states and transitions
between those states. In the spacecraft models these transitions usually arc caused by commands
(sometimes with a time delay).

Defining models of the spacecraft

SAVE uscs a spreadshect-style specification technique. The user develops models by
laying out a spreadsheet (original] y, a commercia personal computer spreadshect was used) which
has states of the system cm onc axis and commands on the other axis (scc Figure 4). The user puts
an “action” into each ccll of the spreadsheet that reflects how the system responds to that command
when it isin that particular state. 123

"Whengver” clauses

Flightrules arc expressed as relationships among state transitions. Wc usce what we call a
"whenever" clause to express aflight rule:

Whenever (a state -> a certain value)
if (some condition holds)
= >(aviolation of the flight rule )

Where "->" implies “bc.comes” and "=>" means "generates™. "1 he "->" implies thatthe state is set
to the value. of interest whether it already had that valuc or not. We aso alow the operator "=>"in
the syntax; thisis read in that context as “changes to the value. “ The two operators arc useful for
different types of rules.

Rule and model compilation

Once a user inputs a rulc or model, this new information is compiled into code in the C
programming language, and this new C module is linked in with the existing models and the
general simulation and utility libraries. Figure 3 shows the overall architecture of the SAVE
system. Once the code is linked in with the standard core. routines, this software system becomes
the “verification” exccutable code. ‘i'hisis the part of the system below the dotted line in Figure 3.

The “Verification” part of SAVE allows a user to check constraints on the state space.
These constraints can be behavioral, imposing some ordering on events, or the constraints can be
time-dependent. Flightrules may translate into one or several actual state constraints. Validating o
sequence of commands involves reading in asequence, which isinterpreted as aset of eventsto
the models. “I"hat is, with cach command the modcls change state according to their specification.
Whenever an event oceurs that changes a state variable for which a constraint exists, this
constraint is checked; if the constraint is not satisfied, the user is notified.

The oniy host-dependent parts of SAVE arc those shaded in Figure 3. The core routines
arc shown partially shaded, since some additional routines arc brought into the core to handle
parallel processing hosts versus single workstation hosts.
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Figure 3. Overall architecture of SA VE.
TOPEX/POSEIDON MSAVE SYSTEM

TOPEX/Poscidon is an earth-orbi[i[~g system that is mapping the Earth's ocean surface.
Some time after launch, it was decided that it would be desirable. to start automating the checking of
low-level constraints. The SAVE research prototype was becoming mature at this time, and it was
decide to modify this system for use on TOPEX. The modified system, which runs on asingle
processor workstation (as opposed to a parallel computer), is called MSAVE.

New reguirements on. MSAVE

1 ‘here were several new feat urcs required for' 1 ‘OPEX that were not applicable for the i nit ial
research prototype. The first requirement was a graphical user interface (Figures 4A and 4B). This
interface allowed the user to rapidly enter and debug rules and models. The sccond was the ability

to read TOPEX-formatted scquences, which arc different from the Galileo prototype format.

Users also needed snapshots of state information (anal ogous to debugging dumpsin
conventional programming) O that they could determine why state transition errors had occurred.
Since errors in a sequence arc taken seriously, users also wanted printed “no errors were found in
this scquence” message outputs when no constraints were violated.

Testing

Onc of the biggest issues (hat arose in transferring this technology into flight use was
determining the proper level of test for the core code, which had not been developed in the
traditional flight system. Wc had to determine the proper level of documentation for the code that
had not been developed in atraditional waterfall development cycle and then find ways of
consistently determining ways of testing to requiremnents.

MSAVE rules arc compiled into C, versus being interpreted, for speed generally and
efficientusce of a paralel processing computer in particular. Thetthe entire program is the.n relinked
and a ncw cxccutable is gencrated. A long philosophical debate ensue.d about when “new code”
was being delivered to tI%e project. Part of the point of MSAVE wasto allow casy modification
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and addition of rules. Hence, we had delivered extensive rule and model modification capability.
A variety of specid case.ss and guidelines were developed to govern the amount of retest required
vhen arule or model was added or modified.
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nitial user reaction

Previous congtraint checking software had been slow since either it ran on an older
mainframe computer or because it was using an interpreted language, whereas MSAVE is
compiled. MSAVE checks a TOPEX week-"long sequence in a matier of seconds. This initially
causcd areaction among some early test users that the code was not actually doing anything.
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(Creation of some artificial test cases with abundant error messages later cured this impression.)
We also had used terminology familiar to those in the computer science community for items on
pull-down menus instead of using terminology traditional to the sequencing community. This also
slowed wi der user acceptance.

Long-term program usage

MSAVE 2.0isnow in usc on TOPEX and has not had any major failure reports since its
delivery about six months prior to this writing. It is routinely used in mainline flight operations to
support checking the rules” shown in Table 2. Criticality “A” rules arc the most critical; some of
them took many “whenever” clauses to implement because they involved complex timing
management. “constraints’ were checks that were never made into flight rules, but that were
uscful consistency checks and items that the sequence team felt they wanted flagged, A total of 32
modcl tables were built to simulate the behavior of the spacecraft associated with checking these
rules and constraints.

Criticalit

Number of rules

A 8

B 3

C 1 ;
Constraint 16

Table 2. Relationship between "whenever"” clauses and rules
Knowledge capture

One of the good side effects of the MSAVE program was that it forced explicit codification
of behavior of many TOPEX subsystems at atime (just after launch) when many of the subsystem
cxperls were getting ready to move on to other things. The user-input format isunderstandable and
usable for many engincers with minimal explanation, avoiding the cost of an intermediate rule
programmer, as well as minimizing the loss of information that can occur during encoding.

IMPI.ICATIONSOI;1'111S WORKFOR FUTURE MISSION OPERATIONS
How can the sequencing experience teach us 1o write more error-frec software?

Sequences are just software, with the important distinction that the consequences of abug
that gets through to the spacecraft can be catastrophic. Tools and techniques developed for the
specialized purpose of validating sequences should generalize to the problem of validating
software, especially for real-[imc. systems. Weintend to pursue. the.sc analogies with a variety of
collaborators. We are particularly interested in the feature that SAVE was eprICItlv designed to
scale. well to the case of large systems, a regime of software development and validation that has so
far largely resisted practical validation tools. We would like to sce SAVI i-like tools used at some
of the other levels shown in Figure 1, particularly in the fault-protection program development
arena.

In the scquence validation realm per se, however, we also arc encouraged by the fact that
this methodology does not really favor any of the classes of spacecraft in particular, and seems to
be generally applicable and intuitive for each of the styles of sequencing programming.
Interestingly, for TOPEX (which is of the repetitive-orbiter category) some of the constraints
implemented are not expected to occur often -- in fact, some models were put into software




T1AA-0603P

precisely because the rule-triggering event was so rare that there was concern that by the time it did
occur no onc would rc.member that this event had i mplications for sequence building. Most of the
rules and constraints, however, were rules that potentially were violated dozens or hundreds of
times per sequence, Since cach sequence consists of about 100 orbits of the carth and some actions
arc take.n cither every fcw orbits or several times an orbit. SAVE can be uscful both in the realm of
capturing knowledge for single-cncountcr, long-cruisc spacecraft (where spacecraft knowledge
might be lostto turnover by the time the spacecraft get.s toits target) and for facilitating fast
turnaround for volatile, yet repetitive scheduling situations for earth orbiters.

Ideas for facilitating technology transfer in and out of flight projects

The SAVE/MSAVE experience has aso been of significant interest because it is one of the
more. successful examples of arc.search system making the transition into routine flight operations.
~"here were a variety of factors that facilitated this. Onc of the mgjor ones was that onc of the
authors was responsible both for the. SAVE protot ypc and part of the TOPEX scquence generati On
sof( ware and was “bilingual” in terminolog y used by rescarch computer scientists and scquencers.
Itis imporlanl that thet € be crossover between the t Wo communities for transfer like this to work.
Often, research groups arc looking for "real problems”, which flight communitics have in
abundance. Frequent informal contact between the two groups might be of long-term benefit to
both. This will require creating incentives in re.scare}] communitics for computer scientists to
spend time on a flight project in an operational capacity (currently, this looks like a hole in the
rescarcher's publication record) and finding ways for operations people to participate in research
}asks. None of these have easy or obvious implementations, but the potential benefits are very
arge.
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